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LETTER TO THE EDITOR 

The 2-transform method of evaluating partial summations in 
closed form 

K J Bunch, W N Cain and R W Grow 
Microwave Device and Physical Electronics Laboratory, Department of Electrical 
Engineering, University of Utah, Salt Lake City, Utah 84112, USA 

Received 18 July 1990, in final form 25 October 1990 

Abstract. A method is shown to convert a partial summation into a residue problem using 
z-transforms. This method is particularly useful for evaluating partial sums whose infinite 
sums diverge. 

The evaluation of partial summations in closed form is hindered by the lack of extensive 
series tables. Wheelon [1,2] and Macfarlane [3] both describe methods to convert 
infinite summations to integrals using Laplace and Fourier-Mellin transforms, respec- 
tively. The extensive integral tables available are the rationale behind these methods. 
Consider the transform integral, 

where K ( s ,  t )  is the kernel of the integral transform [4]. The partial sum S, to be 
evaluated is given by 

The summand is assumed to be a continuous function of s (even though it is 
evaluated at integer values) and is assumed to have a transform defined by ( 1 )  so that 

s=l 

Interchanging the summation and the integral (valid for finite sums), 

S N  = f (  t ) E (  t )  d t  I 
with 

N 
R ( t ) =  1 ~ ( s ,  t ) .  

(3) 

(4) 

If ( 5 )  is summable in closed form, then the original sum (2) can be evaluated as an 
integral (4). 
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The method in this letter is similarly based on the z-transform [5-71 used in discrete 
processes and defined by 

m 

x(z )=  x(n)z-" 
n =o 

(7) 2n i  

Let the summand in (2) take the form of the transform in (7) so that 
N 1 r  N 

S N =  
n = l  

The summation in (8) is in the form of a geometric series, 

1 x(z)(z"- l )  
S N = - f  2ni  z-1 d z. (9) 

From the residue theorem [8], the value of the closed integral of an analytic function 
f ( z )  is given by 

f( z) dz = 27ri residues [f( z)] (10) f 
where the residues are evaluated by the singularities of f ( z )  contained within the 
closed integral. For an mth-order pole at the location zo, the residue is evaluated as [8] 

(11) 
dm-' 

lim - [(z - zO)mf(z)l. 
1 

R e s f ( z ) l z = ~ 0 5 ~  z - z g  dZm-l 

The integral representing the partial summation SN (9) can be transformed using 
(10) into 

S N  = residues ( x y N 1 -  1)) 

The problem of evaluating the partial sum (8) has been transformed into one of 
evaluating the residues of (12), using (11). As an example, consider the series 

N 
s N =  n3. 

f l = l  

The z-transform of the summand is given by [5] 

z(z2+4z+ 1) 
(z - 114 

x(z)  = 

Using this transform in (12) produces a 5th-order pole at z = 1 so that the residue is 
given by (using (11)) 



Letter to the Editor L1215 

in agreement with tabulated values [9]. The advantage of this approach over the 
transform methods discussed previously [ 1-31 is in evaluating partial summations 
whose infinite summations are divergent, as is the case with (13). Neither the Laplace 
nor the Fourier-Mellin transform of the summand in equation 13 exists. Another 
advantage of the z-transform method is that the residue form of the partial series is 
usually easier to evaluate than the integral form. 

This letter has shown how the problem of eva!uating a partial series can be reduced 
to a problem of solving residues. The procedure complements those based on the 
Laplace and Fourier-Mellin transforms, while broadening the number of series forms 
that may be evaluated analytically. 
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